Dimension-Free Error Bounds from Random Projections

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tight Variational Bounds via Random Projections and I-Projections

Information projections are the key building block of variational inference algorithms and are used to approximate a target probabilistic model by projecting it onto a family of tractable distributions. In general, there is no guarantee on the quality of the approximation obtained. To overcome this issue, we introduce a new class of random projections to reduce the dimensionality and hence the ...

متن کامل

Estimators and tail bounds for dimension reduction in lα (0 < α ≤ 2) using stable random projections

Abstract The method of stable random projections is popular in data stream computations, data mining, information retrieval, and machine learning, for efficiently computing the lα (0 < α ≤ 2) distances using a small (memory) space, in one pass of the data. We propose algorithms based on (1) the geometric mean estimator, for all 0 < α ≤ 2, and (2) the harmonic mean estimator, only for small α (e...

متن کامل

Nonlinear Estimators and Tail Bounds for Dimension Reduction in l 1 Using Cauchy Random Projections

For 1 dimension reduction in l1, the method of Cauchy random projections multiplies the original data matrix A ∈ R with a random matrix R ∈ R (k ≪ min(n,D)) whose entries are i.i.d. samples of the standard Cauchy C(0, 1). Because of the impossibility results, one can not hope to recover the pairwise l1 distances in A from B = AR ∈ R, using linear estimators without incurring large errors. Howev...

متن کامل

Very Sparse Stable Random Projections, Estimators and Tail Bounds for Stable Random Projections

The method of stable random projections [39, 41] is popular for data streaming computations, data mining, and machine learning. For example, in data streaming, stable random projections offer a unified, efficient, and elegant methodology for approximating the lα norm of a single data stream, or the lα distance between a pair of streams, for any 0 < α ≤ 2. [18] and [20] applied stable random pro...

متن کامل

Berry-esseen Bounds for Projections of Coordinate Symmetric Random Vectors

For a coordinate symmetric random vector (Y1, . . . ,Yn) = Y ∈ R, that is, one satisfying (Y1, . . . ,Yn) =d (e1Y1, . . . , enYn) for all (e1, . . . , en) ∈ {−1,1}, for which P(Yi = 0) = 0 for all i = 1,2, . . . ,n, the following Berry Esseen bound to the cumulative standard normal Φ for the standardized projection Wθ = Yθ/vθ of Y holds: sup x∈R |P(Wθ ≤ x)−Φ(x)| ≤ 2 n ∑ i=1 |θi |E|X i | + 8.4E(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence

سال: 2019

ISSN: 2374-3468,2159-5399

DOI: 10.1609/aaai.v33i01.33014049